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ABSTRACT - Tuberculosis (TB), a deadly infectious disease caused by Mycobacterium tuberculosis (MTB), remains one of the 
leading causes of death worldwide, particularly in low and middle-income countries. Despite over a century of eradication efforts, 
TB continues to pose a significant public health challenge. One of the main obstacles in controlling TB is the limitation of diagnostic 
facilities that can quickly and accurately detect the disease. This study aims to develop a predictive model for TB diagnosis using 
various machine learning (ML) algorithms, including Decision Tree, Neural Network, Gaussian Naive Bayes, Logistic Regression, 
AdaBoost, Categorical Boosting (CatBoost), Gradient Boosting Machine (GBM), and Extreme Gradient Boosting (XGBoost). To 
prepare an optimal dataset, the research also included data preprocessing using encoding, scaling, and correlation analysis 
techniques. The dataset comprised 1,200 questionnaires collected from three hospitals in Sindh, with 950 respondents meeting the 
inclusion criteria. Experimental results showed that the GBM model achieved the highest accuracy of 95.61%, followed by CatBoost 
at 94.74% and XGBoost at 94.30%. To further enhance accuracy, stacked ensemble method was applied by combining GBM, 
CatBoost, and XGBoost as a meta-model, resulting in a remarkable accuracy of 96.49%. These findings indicate that the proposed 
stacked ensemble method can significantly improve TB diagnosis, offering faster and more efficient solutions compared to traditional 
methods. This research has the potential to enhance early detection and treatment of TB, especially in areas with limited healthcare 
resources. 
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1. Introduction 

Tuberculosis (TB), a deadly infectious disease caused by Mycobacterium tuberculosis (MTB), remains one of the 

primary global causes of mortality, particularly affecting low- and middle-income nations [1]. It predominantly targets 

the respiratory system, with the lungs being the primary site of infection, though it can spread to other organs as well [2]. 

Despite over a century of eradication efforts, TB continues to be a significant public health challenge. This persistence is 

driven by several factors, including MTB's ability to evade the immune system, compounded by social health disparities, 

limited medical personnel, and underdeveloped healthcare infrastructure [3]. Furthermore, the existence of latent 

tuberculosis infection (Latent Tuberculosis Infection - LTBI) exacerbates the difficulty in reducing the incidence of new 

cases. 

The early detection of tuberculosis (TB) is essential to curbing its transmission and improving treatment outcomes 

[4]. Nevertheless, conventional diagnostic techniques, such as sputum cultures, imaging, and interferon-gamma (IFN-γ) 

assays, have their inherent limitations. For example, the interferon-gamma release assay (IGRA) struggles to differentiate 

TB from latent tuberculosis infection (LTBI) or pneumonia, while acid-fast bacillus (AFB) staining can detect 

Mycobacterium, but it cannot distinguish between non-Mtb and Mtb [5]. Although sputum culture is highly sensitive, it 

takes over two weeks to produce results, and chest X-rays are restricted by cost and available infrastructure. Moreover, 

non-adherence to TB treatment has raised the risk of developing drug-resistant strains, worsening the global health crisis 

[6]. 

In line with early TB detection efforts, previous research has proposed the utilization of machine learning (ML) 

algorithms for early TB detection, namely Decision Tree (DT), Gaussian Naive Bayes (GNB), Logistic Regression 

Classifier (LRC), Adaptive Boosting (AdaBoost), and Neural Network (NN). Experimental results from these studies 

demonstrated that these models performed well in TB diagnosis, with DT achieving 92.11%, GNB 89.04%, LRC 90.35%, 

AdaBoost 93.42%, and NN 92.98%. These outcomes indicate that ML algorithms can be highly effective for TB 

diagnosis, offering quicker and more efficient solutions compared to conventional diagnostic methods. However, despite 

prior research demonstrating the effectiveness of individual ML algorithms as an initial TB diagnostic tool and AdaBoost 

even showing the best performance in accuracy (93.42%), precision (95.76%), and F1 score (93.78%) a significant gap 

remains in exploring the synergistic potential of combining various gradient boosting techniques into a unified ensemble 

[7]. 

https://orcid.org/0009-0007-0382-6632
https://orcid.org/0009-0003-4565-6222


International Journal of Advanced Computing and Informatics, vol. 2, no.1, 2026, pp. 1 - 11 

2 

In this study proposes an innovative predictive model for TB diagnosis that aims to address gaps in previous 

studies, where the exploration of the synergistic potential of combining various gradient boosting techniques into a single 

integrated ensemble was limited, and comparative evaluation using consistent datasets was often lacking. The proposed 

model leverages a stacked ensemble method, synergistically integrating the strengths of high-performing gradient 

boosting algorithms is Categorical Boosting (CatBoost), Gradient Boosting Machine (GBM), and Extreme Gradient 

Boosting (XGBoost) as base learners. Model validation was conducted using a comprehensive dataset derived from 950 

patient questionnaires collected from three hospitals in Sindh, encompassing various patient characteristics and TB 

relevant symptoms such as cough, chest pain, smoking habits, and TB risk exposure. To ensure optimal performance, 

careful hyperparameter optimization for each base model and the overall stacked ensemble was performed using the 

Optuna framework. The primary objective of this approach is to achieve highly accurate diagnostic capabilities, indicated 

by a significant improvement in performance metrics, thereby offering a faster and more efficient solution for TB 

detection compared to conventional diagnostic methods. 

2. Related Works 

      Balogun et al. [8] aimed to predict TB treatment outcomes and identify associated risk factors using machine 

learning algorithms. They analyzed secondary data spanning 15 years from hospital medical records, including variables 

such as age, gender, and length of hospital stay. Five classification models were employed is Binary Logistic Regression 

(BLR), Discriminant Analysis (DA), Multilayer Perceptron (MLP), Radial Basis Function (RBF), and Decision Tree 

(DT). The results indicated that the MLP model performed the best, achieving an overall classification accuracy of 73.4%. 

The study concluded that age and length of hospital stay were significant risk factors and recommended MLP for future 

predictions. However, the study is limited by potential bias in the hospital data and the need for a larger dataset, as well 

as the inclusion of additional factors. 

Smith et al. [9]aimed to predict the microbiological confirmation of Mycobacterium tuberculosis in young children 

(<5 years) using easily accessible clinical, demographic, and radiological factors. The researchers evaluated eleven 

machine learning models, including Random Forest and Support Vector Machine (SVM), trained on a prospective cohort 

data from Kenya. The models demonstrated high accuracy (AUROC ranging from 0.84 to 0.90 for invasive samples and 

0.83 to 0.89 for non-invasive samples), with the Polynomial SVM model achieving the lowest misclassification rate of 

0.14 for invasive cases. Key factors such as family TB contact history, immunological evidence of TB, and chest X-ray 

findings consistently showed significant influence. The study concluded that machine learning could accurately predict 

microbiological confirmation of TB. However, the study is limited by the broad categorization of variables and the lack 

of external validation. 

Gichuhi et al. [10] aimed to identify individual risk factors for non-compliance with TB treatment in the Mukono 

district of Uganda using a machine learning approach. They analyzed retrospective data from 838 patients obtained from 

healthcare facility records and applied five classification algorithms, including Support Vector Machine (SVM), Random 

Forest (RF), and AdaBoost. SVM demonstrated the highest accuracy at 91.28%, although AdaBoost showed the best Area 

Under the Curve (AUC). The study identified factors such as TB type, GeneXpert results, age, and gender as predictors 

of non-compliance. The study concluded that machine learning models can accurately identify patients at risk of non-

compliance. However, the research is limited by the use of healthcare facility registries, which may not capture all relevant 

socio-economic or environmental factors, and by the definition of non-compliance as a surrogate measure. 

Kuang et al. [11] aimed to develop a rapid and accurate predictor for drug resistance in MTB using genomic 

sequencing data. The methodology involved training 24 binary classifiers using Logistic Regression, Random Forest, and 

a 1D Convolutional Neural Network (CNN) on 10,575 isolates. The results indicated that the 1D CNN model achieved 

the best F1-score, ranging from 81.1% to 98.2%, outperforming the rule-based Mykrobe tool. For isoniazid, the CNN 

model achieved an accuracy of 96.2%. The study concluded that ML methods can accurately predict TB drug resistance. 

Critically, the research is considered innovative for applying deep learning to a large cohort; however, the CNN model 

only slightly outperformed traditional ML methods and still requires hyperparameter optimization. 

Shu et al. [12] aimed to develop a ML model capable of distinguishing between Crohn's Disease (CD) and intestinal 

tuberculosis (ITB). The methodology involved collecting clinical data from 241 patients across 51 parameters and testing 

six ML methods, with XGBoost exhibiting the best performance. The XGBoost model achieved a diagnostic accuracy of 

0.884 and an Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.946. In real clinical testing, the 

model demonstrated an accuracy of 0.860, with a strong agreement rate (90.7%) with the multidisciplinary team (MDT) 

assessment. The study concluded that the developed model is effective for differential diagnosis between ITB and CD. 

However, the primary limitations of this study include its retrospective nature, the use of data from a single center, a small 

validation sample size, and the exclusion of all relevant clinical data, such as CT results. 

3. Material and Methods  

In this study, the developed model for TB detection utilizes advanced machine learning techniques to enhance 

classification accuracy. The approach involves a comprehensive process of extracting key features from the dataset and 

performing data preprocessing, followed by the application of various machine learning algorithms as primary classifiers. 
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Furthermore, optimization of model parameters and selective feature selection are conducted to improve detection 

performance and minimize false positive rates. Fig. 1 provides an overview of the proposed architecture, along with an 

analysis of the model’s performance metrics. 

 

Fig. 1. Architecture of TB Predictor 

3.1 Dataset 

This study utilizes the same dataset as the prior research conducted by Karmani et al. (2024) [7], which involved 

1,200 TB screening questionnaires randomly distributed across three hospitals in Sindh: the Institute of Chest Diseases 

(TB Sanatorium) Kotri, Liaquat University of Medical and Health Sciences (LUMHS) Jamshoro, and Civil Hospital 

Hyderabad. The questionnaire consisted of four sections: patient personal information, exploratory questions related to 

TB, supplementary information, and comments/feedback. The questionnaire was semi-structured, primarily comprising 

dichotomous (Yes/No) questions, supplemented by a few partially open-ended questions. In order to minimize bias, this 

study employed random probability sampling techniques, and the questionnaire underwent pre-testing to ensure its 

accuracy and psychometric reliability. 

In contrast to the research conducted by Karmani et al., the present study applies alternative models and algorithms 

to analyze the same dataset. Of the 1,200 questionnaires distributed, 950 responses were received, yielding a response 

rate of 79.16%. After excluding incomplete data, 760 responses were selected for further analysis, as presented in Table 

1. The overall response rate achieved was 63.3%. The collected data were subsequently analyzed using alternative 

machine learning (ML) algorithms, with the objective of developing a more efficient and accurate predictive model for 

TB diagnosis. 

Table 1. Statistical summary of the survey responses 

Hospitals 
Number of questionnaires 

Distributed Returned 

Institute of Chest Diseases (TB Sanatorium), Kotri 400 360 

Liaquat University of Medical and Health Sciences, Jamshoro 400 280 
Civil Hospital, Hyderabad 400 310 

Aggregate 1,200 950 

Ambiguous questionnaires (-)190  

Final sample of the study n = 760  

This dataset is utilized in data analysis for predicting TB, comprising data from 760 patients with 26 feature 

columns, which include both categorical and numerical variables. The dataset contains information regarding patient 

characteristics such as the presence of cough, cough duration and type, chest pain, breathing condition, body temperature, 

chills, and whether the patient experiences pulmonary effusion. Additional features include dietary habits, energy 

adequacy, physical condition, smoking habits, living density, and exposure to TB risk. A total of 373 records are available, 

with cough, chest pain, and breathing difficulties being the primary symptoms considered in this study for TB prediction. 

Table 2 shows a sample of the dataset, while Table 3 provides a detailed description of the features used in the analysis. 

Table 2. Sample of dataset 

Patient ID Cough Cough Duration Cough Type … Prediction 

1 No 0 No … Not suspected 

2 No 0 No … Not suspected 

3 No 0 No … Not suspected 

4 No 0 No … Not suspected 

5 No 0 No … Not suspected 
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Patient ID Cough Cough Duration Cough Type … Prediction 

… … … … … … 

756 Yes 3 Productive … TB suspected 
757 Yes 3 Productive … TB suspected 

758 Yes 3 Productive … TB suspected 

759 Yes 3 Productive … TB suspected 

760 Yes 3 Productive … TB suspected 

Table 3. Description of dataset features 

Features Possible values 

Cough {0 = No, 1 = Yes} 

Cough duration {0 = No cough, 0.5 = Mild, 1 = Occasional, 1.5 = Intermittent, 2 = Moderate, 2.5 = Frequent, 3 = Persistent} 

Cough type {0 = No, 1 = Non-Productive, 2 = Productive} 

Mucus {0 = Bloody, 1 = Clear, 2 = No} 

Chest pain {0 = No, 1 = Yes} 
Breathe state {0 = Dyspnea, 1 = Normal} 

Body temperature {0 = High, 1 = Normal} 

Chills {0 = No, 1 = Yes} 

Pulmonary effusion {0 = No, 1 = Yes} 

ESR value {0 = Distributed, 1 = Normal} 
Diet {0 = Balanced, 1 = Malnutrition} 

Physique {0 = Healthy, 1 = Weight Loss} 

Energy adequacy {0 = Fatigue, 1 = Fit} 

Smoking {0 = No, 1 = Yes} 

Crowding {0 = No, 1 = Yes} 
Exposed {0 = No, 1 = Yes} 

 

3.2 Pre-Proccessing 

Prior to the implementation of machine learning algorithms, a comprehensive preprocessing phase was carried out 

to ensure the quality, consistency, and suitability of the dataset for modeling tasks. This step is essential in any data-

driven study, particularly in medical diagnostics, where data integrity directly influences model performance and 

reliability. The preprocessing workflow includes several critical stages, such as verifying the presence of missing values, 

eliminating irrelevant attributes, encoding categorical variables into numerical form, and splitting the dataset into training 

and testing subsets. Each of these steps plays a pivotal role in preparing the data to be effectively utilized by the selected 

classification models. The first step in preprocessing is to remove irrelevant features “𝑈𝑛𝑛𝑎𝑚𝑒𝑑: 0”column, which 

provided no relevant information, was consequently removed from the dataset. This column contained values deemed 

extraneous to the model, merely increasing dataset complexity without contributing to the classification process. 

Correlation (𝛸, y) ≈ 0                                                                   (2) 

where 𝛸 denotes the irrelevant feature (in this case, the 𝑈𝑛𝑛𝑎𝑚𝑒𝑑: 0 column), y is the target variable, and the near-zero 

correlation indicates that there is little to no linear relationship between the feature and the target, justifying its removal. 

Next, categorical variables are converted into numerical representations, the majority of features within the dataset 

are inherently categorical variables, necessitating their conversion into a numerical representation for compatibility with 

machine learning algorithms. This encoding process was executed using the 𝑎𝑡𝑦𝑝𝑒("Category"). 𝑐𝑎𝑡. 𝑐𝑜𝑑𝑒𝑠 method, 

which transforms each distinct category into a corresponding numerical code. A notable exception applied to the target 

column (Prediction) for the XGBoost and Stacked Ensemble models, where encoding was performed independently. This 

distinction was crucial as these specific models require a more explicit categorical representation for their internal 

processing mechanisms. 

𝑋encoded = 𝑓(𝑋) = LabelEncoder(𝑋)                                                     (3) 

where 𝑋 represents the original categorical feature, LabelEncoder(𝑋) denotes the transformation function that assigns a 

unique numerical code to each category in 𝑋, and 𝑋encoded is the resulting numerically encoded feature used for model 

training. 

Finally, the data is split into training and testing sets using the 𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡 function from the scikit-learn 

library, with 70% allocated for training and 30% for testing. The split uses the 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 1  parameter to ensure 

consistent and reproducible results, and the 𝑠𝑡𝑟𝑎𝑡𝑖𝑓𝑦 = 𝑦𝑑𝑎𝑡𝑎 parameter to maintain a balanced distribution of the target 

classes in both the training and testing datasets. Overall, these preprocessing stages aim to prepare the data in an optimal 

format for the modeling phase, maintain data integrity, and ensure that relevant variability is preserved. 

3.3 GBM Classifier 

GBM is an ensemble learning algorithm that iteratively combines multiple weak learners typically decision trees 

into a strong predictive model. In the context of medical classification tasks such as TB detection, GBM is well-regarded 

for its capability to model non-linear relationships and adapt to complex data structures. The algorithm operates by 



International Journal of Advanced Computing and Informatics, vol. 2, no.1, 2026, pp. 1 - 11 

5 

sequentially minimizing a defined loss function, where each new model is trained to correct the residual errors of the 

previous ensemble using a gradient descent approach [13]. The optimization process for GBM can be represented by the 

following equations: 

Initial model prediction (base learner): 

𝐹0(x) =
arg min

𝛾
∑ 𝐿(y𝑖, 𝛾)

𝑛

𝑖=1

                                                                        (4) 

where 𝐹0(x) represents the initial model prediction (also known as the base learner), 𝛾 is the constant prediction value to 

be optimized, 𝐿(y𝑖, 𝛾) is the loss function measuring the error between the true label yᵢ and the constant prediction γ, and 

n is the total number of training samples. 

Computation of pseudo-residuals at iteration 𝓂: 

𝑟𝑖𝑚 = − [
∂L (y𝑖, 𝐹(𝑥𝑖))

∂ 𝐹(𝑥𝑖)
]

𝐹(𝑥)= 𝐹𝑚−1(𝑥)

                                                                  (5) 

where 𝑟𝑖𝑚 denotes the pseudo-residual for the i-th instance at iteration m, L (y𝑖, 𝐹(𝑥𝑖)) is the loss function comparing the 

true label y𝑖, with the model prediction 𝐹(𝑥𝑖), and 𝐹𝑚−1(𝑥) is the prediction from the previous iteration (𝑚 − 1). The 

partial derivative measures the gradient of the loss with respect to the model output, serving as the direction for the next 

model update. 

Training weak learner ℎ𝑚(𝑥) to fit residuals: 

ℎ𝑚(𝑥) = fit (𝑥𝑖, 𝑟𝑖𝑚)                                                                                (6) 

where ℎ𝑚(𝑥) is the weak learner (typically a decision tree) trained at iteration 𝑚, 𝑥𝑖 represents the input features, and 𝑟𝑖𝑚 

are the pseudo-residuals computed from the previous iteration. The weak learner is trained to approximate these residuals 

in order to correct the prediction errors made so far. 

Model update at each iteration: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + η ⋅ ℎ𝑚(𝑥)                                                                         (7) 

where 𝐹𝑚(𝑥) is the updated prediction after the 𝑚 -th iteration, 𝐹𝑚−1(𝑥) is the prediction from the previous iteration, η 

is the learning rate that controls the contribution of the new weak learner, and ℎ𝑚(𝑥) is the weak learner trained to fit the 

pseudo-residuals at iteration 𝑚. 

Final prediction after  𝑀 iterations: 

𝐹𝑀(𝑥) = 𝐹0(𝑥) + ∑ η ⋅ ℎ𝑚(𝑥)    

𝑚

𝑚=1

                                                                  (8) 

where 𝐹𝑀(𝑥) is the final prediction after 𝑀 iterations, 𝐹0(𝑥) is the initial model prediction (base learner), η is the learning 

rate that scales the contribution of each weak learner, and ℎ𝑚(𝑥) represents the weak learner trained at iteration m. The 

summation aggregates the improvements made by all 𝑀 weak learners. 

In this study, the optimization of the GBM Classifier model was performed comprehensively using GridSearchCV 

to achieve optimal classification performance. This technique systematically searches through key hyperparameter 

combinations, including 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠, which determines the number of trees in the ensemble, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒, which 

controls the size of the model's update, and max _𝑑𝑒𝑝𝑡ℎ, which regulates the complexity of each decision tree. The choice 

of GridSearchCV is based on its ability to conduct an exhaustive search methodically, enabling the identification of the 

optimal configuration within the defined parameter space. This optimization process is crucial to ensure that the model 

achieves its maximum predictive capacity while maintaining generalization on new data. 

The performance of the model is illustrated through a confusion matrix presented in Table 4 is used to assess the 

classification performance. The confusion matrix is crucial as it clearly shows the counts of True Positives (TB cases 

correctly identified), False Positives (non-TB cases misclassified as TB), True Negatives (non-TB cases correctly 

identified), and False Negatives (TB cases not detected). This visualization provides a detailed understanding of the errors 

made by the model, which is essential for diagnostic analysis. 

The application of GBM in this research is justified by its strong generalization ability and resilience to overfitting 

when properly configured. Furthermore, GBM offers flexibility in choosing among various loss functions, enabling better 

alignment with the specific characteristics of medical datasets. Therefore, GBM is an appropriate and effective choice to 

enhance the accuracy and reliability of automated TB classification using a machine learning framework. 
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3.4 CatBoost Classifier  

CatBoost is a gradient boosting algorithm specifically designed to handle categorical variables efficiently without 

requiring extensive preprocessing or manual encoding. As an advanced ensemble method, CatBoost constructs a sequence 

of decision trees where each successive tree attempts to correct the prediction errors of the previous ensemble. This makes 

it particularly suitable for complex classification tasks such as TB diagnosis, where feature interactions and nonlinear 

relationships are common [14]. The training process of CatBoost relies on the minimization of a specified loss function 

using gradient descent. In classification tasks, CatBoost commonly employs Log Loss or Cross-Entropy Loss, expressed 

mathematically as: 

ℒ(y, 𝑃̂) = −[y log( 𝑃̂) + (1 − y )log(1 − 𝑃̂)]                                                        (9) 

where y ∈ {0,1} is the true class label, and 𝑃̂ is the predicted probability of the positive class. During training, 

CatBoost computes the gradient of this loss and builds trees that minimize the residuals in a stage-wise manner: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + η ⋅ ℎ𝑚(𝑥)                                                                         (10) 

where 𝐹𝑚(𝑥) is the prediction at stage mmm 𝓂, η is the learning rate, and ℎ𝑚(𝑥) is the decision tree trained on 

the residuals.  

To achieve optimal performance, the CatBoost model in this study was optimized using 𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑉. This 

exhaustive search method systematically explores predefined hyperparameter combinations to identify the best settings. 

Key hyperparameters tuned include 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑑𝑒𝑝𝑡ℎ, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒, and 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. This optimization process 

is crucial for maximizing the model's generalization ability and mitigating the risk of overfitting or underfitting. 

The model's performance is visually presented a confusion matrix in Table 4 is used to provide of the classification 

performance. The confusion matrix is valuable as it clearly displays the number of True Positives (correctly detected TB 

cases), False Positives (non-TB cases incorrectly classified as TB), True Negatives (correctly detected non-TB cases), 

and False Negatives (undetected TB cases). This visualization offers deeper insights into the types of errors made by the 

model, which is crucial for diagnostic analysis. 

CatBoost was selected due to its strengths in preventing overfitting via ordered boosting and its native support for 

categorical features, which are prevalent in questionnaire-based clinical datasets. The model's robustness, efficiency, and 

reduced need for extensive preprocessing make it highly appropriate for medical classification scenarios such as 

automated TB detection. 

3.5 XGBoost Classifier  

XGBoost is a scalable, regularized boosting technique that extends the principles of gradient boosting to deliver 

enhanced speed and performance. It is particularly effective in high-dimensional classification tasks, including medical 

diagnostics such as TB detection, due to its capability to handle sparse and structured data, implement automatic 

regularization, and optimize parallel computation [15]. XGBoost operates by minimizing a differentiable loss function 

through an additive learning approach. In each iteration, the model fits a new decision tree to the residuals of the previous 

ensemble's predictions. The objective function combines both the loss term and a regularization term to penalize model 

complexity: 

ℒ(𝑡) = ∑ 𝑙(y𝑖,ŷ (𝑡−1)

𝑛

𝑖=1

+ 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡)                                                          (11) 

where ℒ (𝑡) is the objective function at iteration 𝑡, 𝑡(y𝑖,ŷ (𝑡−1) + 𝑓𝑡(𝑥𝑖)) is the loss function measuring the difference 

between the true label y𝑖, and the updated prediction, ŷ (𝑡−1) is the ensemble's prediction at iteration 𝑡 − 1, 𝑓𝑡(𝑥𝑖) is the 

new function (typically a decision tree) added at iteration t, and Ω(𝑓𝑡) is the regularization term penalizing the complexity 

of 𝑓𝑡 to avoid overfitting. Regularization Term: 

Ω(𝑓) = 𝛾𝑇 +
1

2
  λ ∑ w𝑗

2

𝑇

𝑗=1

                                                                     (12) 

where Ω(𝑓) is the regularization term used to penalize the complexity of the model, 𝑇 is the number of leaves in the 

decision tree 𝑓, 𝛾 is the penalty applied to each leaf (controlling model complexity), λ is the L2 regularization coefficient, 

and wⱼ is the score (weight) assigned to the 𝑗 -th leaf. This term helps control overfitting by discouraging overly complex 

trees. 

To align with the model's requirement for numerical input, the class labels were encoded using LabelEncoder, 

and categorical features were transformed into integer codes. XGBoost's built-in handling of sparse inputs and robustness 

against overfitting achieved through regularization and early stopping mechanisms makes it a suitable candidate for TB 

classification tasks where both model accuracy and generalizability are critical. 
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The performance optimization of the XGBoost model was carried out using GridSearchCV. This hyperparameter 

search method systematically explores key hyperparameter combinations, including 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒, and 

max _𝑑𝑒𝑝𝑡ℎ, to identify the optimal configuration. Model validation was performed using 𝑆𝑡𝑟𝑎𝑡𝑖𝑓𝑖𝑒𝑑𝐾𝐹𝑜𝑙𝑑 with 5 

folds. This cross-validation approach ensures that class proportions are maintained across each fold, which is crucial for 

potentially imbalanced datasets, such as in medical classification. 

Performance of the model is displayed visually using a confusion matrix presented in Table 4 is utilized to assess 

the classification performance. The confusion matrix is essential as it provides a clear breakdown of True Positives (TB 

cases correctly identified), False Positives (non-TB cases incorrectly labeled as TB), True Negatives (non-TB cases 

correctly classified), and False Negatives (TB cases that were missed). This visualization helps to gain a deeper 

understanding of the model’s error patterns, which is critical for diagnostic evaluation. 

XGBoost inherent capability to handle sparse inputs and its robustness against overfitting, primarily achieved 

through its advanced regularization mechanisms and early stopping protocols, render it a highly suitable candidate for TB 

classification tasks. In this critical medical context, where both model accuracy and generalizability are paramount, 

XGBoost offers a powerful and effective framework for achieving reliable diagnostic outcomes. 

Table 4. Confusion Matrix for Evaluating Classifiers Performance. 

GBM Classifier Predicted Normal Predicted Tuberculosis 

Actual Normal 105 5 

Actual Tuberculosis 5 113 

CatBoost Classifier Predicted Normal Predicted Tuberculosis 

Actual Normal 104 6 
Actual Tuberculosis 6 112 

XGBoost Classifier Predicted Normal Predicted Tuberculosis 

Actual Normal 104 6 

Actual Tuberculosis 7 111 

Table 5. Configuration of Hyperparameter for Classifiers Perfomance. 

Classifier Hyperparameter Testing Value Method for Finding the Best Parameters 

GBM n_estimators 800, 1000 GridSearchCV 

 learning_rate 0.05, 0.1  

 max_depth 6, 8  

CatBoost iterations 800, 1000 GridSearchCV 
 depth 6, 8  

 learning_rate 0.05, 0.1  

 loss_function Logloss, CrossEntropy  

XGBoost n_estimators 800, 1000 GridSearchCV 

 learning_rate 0.05, 0.1  
 max_depth 6, 8  

 

3.5 Stacked Ensemble Classifiers  

To ensure robust model development, the CatBoost Classifier, GBM Classifier, and XGBoost Classifier were 

implemented using a rigorous training strategy involving Grid Search Cross-Validation to determine the optimal 

combination of hyperparameters, including the number of estimators 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 learning rate (η), and maximum tree 

depth (𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ𝑚𝑎𝑥) The cross-validation procedure employed StratifiedKFold to preserve class distribution within 

each fold, which is essential for classification tasks involving imbalanced data such as TB diagnosis. 

In this study, a stacked ensemble model was employed as an advanced machine learning strategy to enhance 

classification performance by leveraging the complementary strengths of multiple base learners [16]. Specifically, the 

ensemble integrates three high-performing gradient boosting algorithms CatBoost Classifier, Gradient Boosting 

Classifier, and XGBoost Classifier as base models, while a Logistic Regression model functions as the meta-learner. 

These base models are trained independently using a consistent 5-fold 𝑆𝑡𝑟𝑎𝑡𝑖𝑓𝑖𝑒𝑑𝐾𝐹𝑜𝑙𝑑 cross-validation to ensure robust 

performance across imbalanced class distributions, particularly relevant in medical classification tasks such as TB 

suspicion. Each base model takes the same input feature vector x and outputs a predicted probability or class label. The 

outputs from these models are concatenated into a new feature vector: 

z = [ℎ1(x), ℎ2(x), ℎ3(x)]                                                                                  (13) 

where z is the new feature vector formed by concatenating the outputs of multiple base models (e. g. , ℎ₁, ℎ₂, and ℎ₃), each 

representing a different model’s prediction for the same input x. This vector serves as the input to a meta-learner in 

ensemble methods such as stacked. The meta-model, implemented as Logistic Regression, uses the output vector 𝑧 as 

input and computes the final prediction: 

𝑓(𝑋) = σ (𝑤 𝑧 + 𝑏)                                                                                        (14) 

Prior to model training, categorical variables were transformed into numerical representations to comply with the 

input requirements of gradient boosting algorithms. Additionally, class labels were encoded using LabelEncoder, given 
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that XGBoost requires integer-based targets. Hyperparameter optimization was conducted using the Optuna framework, 

which efficiently explores the hyperparameter space through a Tree-structured Parzen Estimator (TPE) sampler. The 

optimization objective was defined to maximize the F1-score of the minority class (“TB Suspected”), ensuring that both 

precision and recall were balanced in the final model. Final Stacked Model Function: 

𝑓(x) = σ(𝑤1 ⋅ ℎ1(x) + 𝑤2 ⋅ ℎ2(x) + 𝑤3 ⋅ ℎ3(x) + b)                                                       (15) 

where  𝑓(x) is the final prediction of the stacked ensemble model, ℎ1(x), ℎ2(x), and ℎ3(x) are the outputs from the base 

models, 𝑤1, 𝑤2, and 𝑤3 are the corresponding weights learned by the meta-learner, b is the bias term, and σ is the 

activation function (commonly the sigmoid function) used to map the weighted sum into a probability or final decision 

value. 

After identifying the optimal set of hyperparameters, the best-performing models were retrained and integrated 

into a final stacked classifier. Performance evaluation was conducted using standard classification metrics (accuracy, 

precision, recall, F1-score), and the results were visualized using interactive bar plots and a stylized confusion matrix. 

The critical advantage of the stacked approach lies in its ability to capture diverse decision boundaries from heterogeneous 

models, thereby improving generalization and reducing overfitting. This multi-layered architecture proves particularly 

effective for complex and high-stakes classification problems in the medical domain, where sensitivity and specificity 

must be carefully balanced. 

4. Results and Discussion 

To rigorously assess the classification performance of the proposed model in distinguishing between Normal and 

Tuberculosis cases, a confusion matrix analysis was performed. This method enables a granular evaluation of prediction 

outcomes by identifying not only the correctly classified instances but also the types of miss classification made by the 

model. Specifically, the Normal class represents individuals without tuberculosis, while the Tuberculosis class denotes 

confirmed TB cases.  

Table 6. Confusion matrix purposed method 

Confusion Matrix Predicted Normal Predicted Tuberculosis 

Actual Normal 105 5 
Actual Tuberculosis 3 115 

Table 6 presents the confusion matrix summarizing the model’s classification performance. The model 

successfully identified 105 out of 110 actual Normal cases, with only 5 misclassified as Tuberculosis. Similarly, it 

correctly classified 115 out of 118 actual Tuberculosis cases, with just 3 labeled incorrectly as Normal. These results 

suggest that the model is not only capable of detecting tuberculosis cases with a high degree of sensitivity but also 

maintains good specificity by minimizing false alarms in normal patients. The low number of false negatives is 

particularly important in medical diagnostics, as failing to detect tuberculosis could have serious health implications. 

Overall, the confusion matrix indicates that the model achieves a well-balanced performance in distinguishing between 

the two classes. 

Table 7. Comparison of Performance Metrics Across All Models Classifiers. 

Based on Table 7, the proposed Stacked Ensemble method clearly demonstrates superior performance compared to 

all other evaluated models. It achieves the highest scores in all key metrics 96.49% accuracy, 95.83% precision, 97.46% 

recall, and 96.64% F1-score surpassing strong individual models such as GBM, CatBoost, and XGBoost. The combination 

of high recall and high precision reflects not only the model’s ability to accurately identify tuberculosis cases but also its 

capacity to minimize false alarms, which is essential in clinical decision-making. The improvement in performance can 

be attributed to the nature of Stacked, which integrates multiple base learners to capture diverse patterns and reduce 

generalization error. Unlike single models that may be prone to overfitting or underfitting depending on the data 
distribution, the Stacked Ensemble benefits from the complementary strengths of its components, resulting in a more 

robust and generalizable classifier. This highlights its potential as a reliable tool in tuberculosis detection tasks. 

To evaluate the performance of the stacked ensemble model in differentiating between ‘TB Suspected’ and ‘Not 

Suspected’ classes, we utilized the Receiver Operating Characteristic (ROC) curve and the Area Under the Curve (AUC). 

The calculated ROC-AUC score was 0.98, indicating the model's excellent discriminative ability between the two classes. 

The generated ROC curve demonstrated a remarkably high True Positive Rate (TPR) across nearly the entire range of 

Model Accuracy Precision Recall F1-Score 

Stacked Ensemble 96.49 % 95.83 % 97.46 % 96.64 % 

GBM 95.61 % 95.76 % 95.76 % 95.76 % 

CatBoost 94.74 % 94.92 % 94.92 % 94.92 % 

XGBoost 94.30 % 94.87 % 94.07 % 94.47 % 
Decision Tree 92.54 % 93.91 % 91.53 % 92.70 % 

AdaBoost 90.79 % 91.45 % 90.68 % 91.06 % 

Neural Network 90.79 % 91.45 % 90.68 % 91.06 % 

Gaussian Naive Bayes 89.91 % 86.82 % 94.92 % 90.69 % 

Logistic Regression 88.60 % 87.10 % 91.53 % 89.26 % 



International Journal of Advanced Computing and Informatics, vol. 2, no.1, 2026, pp. 1 - 11 

9 

False Positive Rate (FPR). This signifies that the model can identify 'TB Suspected' cases with very few false positives. 

This graph illustrates near-perfect performance, which is critically important in the context of early TB detection, where 

false negatives must be minimized to prevent further disease transmission. The following ROC Curve illustrates an ROC-

AUC of 0.98, reflecting the model’s excellent prediction quality, with the area under the curve being near-perfect. 

 

Fig. 2. ROC Curve for stacked ensemble classifier 

  

Fig. 3. Comparative analysis of accuracy levels of 

various classifier 

  

Fig. 4. Comparative analysis of precision levels of 

various classifier 

  

Fig. 5. Comparative analysis of recall Rates of various 

classifier 

 

Fig. 6. Comparative analysis of f1-score level of various 

classifier 

When compared to the findings by [7], who reported the best performance using the AdaBoost method with an 

accuracy of 93.42%, precision of 95.76%, and F1-score of 93.78%, the results of our study demonstrate a clear and 

consistent improvement across all evaluation metrics. Utilizing the same dataset, the proposed Stacked Ensemble model 

achieves an accuracy of 96.49% as depicted in Fig. 3, precision of 95.83% as depicted in Fig. 4, recall of 97.46% as 

depicted in Fig. 5, and an F1-score of 96.64% as depicted in Fig. 6. These improvements, although in some cases 

numerically modest, are statistically and practically significant in medical classification tasks where even small gains in 

recall or F1-score can translate into critical improvements in diagnostic reliability. Notably, while Karmani et al.'s model 

focused on boosting a single weak learner, our approach integrates multiple base classifiers in a stacked architecture, 

enabling the model to capture more complex patterns and reduce the generalization error. The Stacked Ensemble not only 

outperforms AdaBoost in accuracy and F1-score but also demonstrates superior recall, indicating better sensitivity in 

identifying tuberculosis cases.  

While the proposed Stacked Ensemble model delivers superior predictive performance, one important 

consideration is the interpretability of the model. Unlike single decision trees, which are inherently transparent, ensemble 

models such as stacked especially those involving gradient boosting methods tend to function as “black boxes.” This may 

pose challenges in clinical adoption, where understanding the rationale behind a prediction is critical. However, 

interpretability tools such as SHAP (SHapley Additive exPlanations) or feature importance analysis can be employed to 
provide post-hoc explanations, offering insights into which features most strongly influence the model’s decisions. 
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Integrating such interpretability frameworks in future work would enhance the model’s usability and trustworthiness in 

medical settings. 

5. Conclusions 

This study presents a robust machine learning-based framework for the early and accurate diagnosis of 

Tuberculosis (TB), utilizing a stacked ensemble approach that combines the predictive strengths of CatBoost, GBM, and 

XGBoost. By leveraging a clinically relevant dataset previously used by Karmani et al., and applying advanced data 

preprocessing, feature engineering, and hyperparameter optimization techniques, the proposed model achieved substantial 

improvements in diagnostic performance across all key evaluation metrics. The Stacked Ensemble model attained an 

accuracy of 96.49%, precision of 95.83%, recall of 97.46%, and an F1-score of 96.64%, outperforming all individual 

baseline models as well as prior research benchmarks. 

In contrast to previous studies that often relied on standalone classifiers or traditional ensemble techniques such 

as AdaBoost, this research highlights the efficacy of a stacked architecture in capturing complex, nonlinear patterns in 

TB-related clinical data. The integration of diverse gradient boosting models enabled the system to generalize better and 

reduce the risk of overfitting, which is particularly crucial in medical applications where sensitivity and specificity are 

critical. Moreover, the model demonstrated a well-balanced confusion matrix with a minimal number of false negatives 

and false positives, reinforcing its practical utility in real-world TB screening contexts.While the predictive performance 

of the proposed model is promising, interpretability remains a key consideration for clinical adoption. Stacked ensemble, 

especially those based on gradient boosting, are inherently opaque, which may hinder trust and transparency in decision-

making processes. Future work should focus on integrating interpretability frameworks such as SHAP or LIME to provide 

actionable insights into the model’s reasoning. Doing so would enhance its acceptance by healthcare professionals and 

facilitate its implementation in TB diagnostic workflows, particularly in resource-constrained settings. 

In summary, this research highlights the potential of ensemble machine learning methods, particularly Stacked 

models, to significantly enhance the accuracy of tuberculosis (TB) diagnosis. It contributes to the growing body of 

evidence supporting the use of AI-driven tools in public health and clinical diagnostics, providing a replicable and scalable 

solution for improving TB detection using accessible questionnaire-based data. The key findings demonstrate that this 

approach can improve diagnostic accuracy by leveraging readily available data. However, the study has some limitations, 

such as the need for larger and more diverse datasets to further validate the model. Future research could expand this 

work by testing the model across different populations and clinical settings, as well as optimizing it for real-world 

applications. 
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